Identification and abiotic stress analysis of calmodulin-binding transcription activator/signal responsive genes in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino)
نویسندگان
چکیده
In cells, calmodulin (CaM) is the most remarkable Ca transducer. BcCAMTA gene family members are calmodulin-binding transcription activators, which contain new type of sequence-specific DNA-binding domain (CG-1), an ankyrin repeats and tow IQ calmodulin-binding motifs. In our study, 8 calmodulin-binding transcription activator (CAMTA) genes were identified from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino, NHCC), and named as BcCAMTA1, BcCAMTA2.1, BcCAMTA2.2, BcCAMTA3.1, BcCAMTA3.2, BcCAMTA4, BcCAMTA5 and BcCAMTA6 through BcCAMTA genes cloning and according AtCAMTAs. Compared with the classification between Arabidopsis and Chinese cabbage, BcCAMTA family was divided into six subgroups (respectively named as BcCAMTA1-6). Subcellular localization prediction showed that most of the BcCAMTAs were located in the nucleus, except BcCAMTA2.2 and BcCAMTA6 that were located in the cytosol, indicating the different function among BcCAMTAs. The evolution and phylogenetic analysis of BcCAMTAs together with their orthologs from other species showed that CAMTA transcription factor family members duplicated in evolution of species, as well as BcCAMTAs, which showed closer evolutionary relationship with Arabidopsis and Chinese cabbage. Seedlings were exposed to four abiotic stresses including cold, drought, copper ion and nitrate stress to explore the transcriptional levels of BcCAMTA genes. The result exhibited that BcCAMTAs, except for BcCAMTA2, were up-regulated under cold stress in 4 h, among which showed the positive regulation to resist cold stress of NHCC. The expression of BcCAMTA2.1 and BcCAMTA3.2 were found significantly differential expression in five development stages of NHCC, and expressed highest in flowering stage.
منابع مشابه
Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis)
Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat s...
متن کاملIdentification and Validation of Reference Genes for RT-qPCR Analysis in Non-Heading Chinese Cabbage Flowers
Non-heading Chinese cabbage (Brassica rapa ssp. chinensis Makino) is an important vegetable member of Brassica rapa crops. It exhibits a typical sporophytic self-incompatibility (SI) system and is an ideal model plant to explore the mechanism of SI. Gene expression research are frequently used to unravel the complex genetic mechanism and in such studies appropriate reference selection is vital....
متن کاملIdentification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa
The species Brassica rapa includes various vegetable crops. Production of these vegetable crops is usually impaired by heat stress. Some microRNAs (miRNAs) in Arabidopsis have been considered to mediate gene silencing in plant response to abiotic stress. However, it remains unknown whether or what miRNAs play a role in heat resistance of B. rapa. To identify genomewide conserved and novel miRNA...
متن کاملGenome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis).
Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetable crops grown worldwide, and various methods exist for selection, propagation, and cultivation. The entire Chinese cabbage genome has been sequenced, and the heat shock transcription factor family (Hsfs) has been found to play a central role in plant growth and development and in the response to biotic and abio...
متن کاملThe polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development
Brassica campestris Male Fertility 2 (BcMF2) is a putative polygalacturonase (PG) gene previously isolated from the flower bud of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis). This gene was found to be expressed specifically in tapetum and pollen after the tetrad stage of anther development. Antisense RNA technology was used to study the function o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015